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ABSTRACT
Recent technological advances and the continuing quest for greater
efficiency have led to an explosion of link and network protocols
for wireless sensor networks. These protocols embody very dif-
ferent assumptions about network stack composition and, as such,
have limited interoperability. It has been suggested [3] that, in prin-
ciple, wireless sensor networks would benefit from a unifying ab-
straction (or “narrow waist” in architectural terms), and that this
abstraction should be closer to the link level than the network level.
This paper takes that vague principle and turns it into practice, by
proposing a specific unifying sensornet protocol (SP) that provides
shared neighbor management and a message pool.

The two goals of a unifying abstraction are generality and ef-
ficiency: it should be capable of running over a broad range of
link-layer technologies and supporting a wide variety of network
protocols, and doing so should not lead to a significant loss of ef-
ficiency. To investigate the extent to which SP meets these goals,
we implemented SP (in TinyOS) on top of two very different ra-
dio technologies: B-MAC on mica2 and IEEE 802.15.4 on Telos.
We also built a variety of network protocols on SP, including ex-
amples of collection routing [53], dissemination [26], and aggrega-
tion [33]. Measurements show that these protocols do not sacrifice
performance through the use of our SP abstraction.

Categories and Subject Descriptors:
C.2.2 [Computer-Communication Networks] Network Protocols,
D.4.7 [Operating Systems]: Organization and Design

General Terms: Design, Experimentation, Standardization

Keywords: Protocol architecture, link protocols, network proto-
cols, wireless sensor networks, network abstractions

1. INTRODUCTION
Wireless sensor networks (hereafter sensornets) pose many net-

working challenges. These challenges have motivated a broad set
of investigations, which have given us a cornucopia of possible pro-
tocols at each level in the system. Many physical links, with widely
differing characteristics, have been utilized ([2, 18, 47, 48, 49]).
Myriad low power media access protocols have been developed,
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based on CSMA ([35, 41, 52]), TDMA ([10, 37, 50, 56]), or both
([15, 38]). Numerous topology formation algorithms ([1, 14, 55]),
routing protocols ([34, 53]), aggregation algorithms ([27, 33]), and
dissemination protocols ([14, 16, 22, 26]) have been proposed.

The extreme resource scarcity of sensornets requires minimizing
energy usage while maintaining high reliability and data quality
over time-varying and noisy links ([53, 57]). To meet these am-
bitious goals, most research efforts have emphasized performance
more than modularity, with many issues (such as power manage-
ment, scheduling, and data buffering) handled simultaneously at
many levels in a deeply intertwined fashion. As a result, the field
has produced a few vertically integrated designs, each with their
own interface assumptions, and there is little code reuse.

The response to this situation has been a call for a sensornet ar-
chitecture [3]. Such an architecture would provide much greater
modularity to sensornet designs, thereby regularizing assumptions
about interfaces, encouraging code reuse, and fostering greater in-
tellectual synergy.1 Moreover, if the architecture has a “narrow
waist” (as does the Internet architecture), then it could effectively
decouple many aspects of the software from the underlying hard-
ware. Such a decoupling would be of great benefit given the rapid
technological advances in the sensornet arena, particularly in radio
transceivers. The authors of [3] make the case that, in contrast to
the Internet, the narrow waist (which they call the sensornetwork
protocol, SP), not be at the network layer but instead sit between
the network and link layers. This “lowering of the waist” is nec-
essary because processing potentially occurs at each hop, not just
at the end points, and there are many application-specific multi-
point communication patterns (collection, aggregation, dissemina-
tion, etc.). As observed in [3], one cannot base the sensornet archi-
tecture around the end-to-end delivery of packets, but instead must
build upon the lower-level base of best-effort single-hop communi-
cations.

The key challenge for SP is providing adequate insulation be-
tween the hardware below and the various communication abstrac-
tions above while still providing adequate efficiency. It should al-
low network level protocols to optimize for the underlying link in
terms of the characteristics expressed at SP, rather than knowing
which particular link and physical layer resides beneath.2 More-
over, SP must allow network protocols to choose neighbors wisely,
taking into account information available at the link layer.

1Zigbee proposes a classic layered architecture, but each layer as-
sumes a specific instance of the surrounding layers; e.g., the routing
layer assumes the IEEE 802.15.4 link and physical layers. An ar-
chitecture built on static technologies is destined for obsolescence.
2This is in contrast to IEEE 802.2 [46] which provides a uniform
syntactic interface to various link layers, but the code above takes
specific actions based on the particular protocol beneath, whether
it is ethernet, 802.11, and so on.



Rather than strict, opaque layering as used in the Internet, SP
must be translucent; it should provide enough information so that
the network and link layers can cooperate to achieve effective use
of communication resources, but it must do so in a way that is
independent of the link layer. To be useful, SP must be easy to
program against, providing network protocols with a few simple
choices rather than a bewildering set of hard-to-configure parame-
ters.

While [3] advocates the existence of SP, it does not propose a
concrete service, interface,or protocol. In this paper, specifically
Section 2, we describe our preliminary design for SP. We translate
the general notion of a decoupling interface for wireless sensor net-
works into a concrete proposal for a unifying link-level abstraction.
Multiple network protocols cooperatively optimize with link proto-
cols through our abstraction. This abstraction is novel in how it
promotes cooperation across the link and network layers to utilize
limited resources efficiently.

Our SP design is simple, giving network layer protocols only
one bit to express their desires about the urgency and reliability3

of a message. At the same time, SP allows link layers and net-
work protocols to cooperate by maintaining and exposing a shared
neighbor table and message pool.

It takes many years of hard use to evaluate an architecture, since
its goal is not to excel in one particular circumstance but instead
to perform adequately in a wide range of scenarios. Our design of
SP was based on our experience with a variety of link and network
protocols, and we have done the thought-experiment of asking how
one might use them above and below SP (Section 7). While these
musings were encouraging, they are hardly convincing. To provide
more concrete evidence, we report in this paper on a smaller set of
cases that we have implemented and measured.

We show the effectiveness of SP through a TinyOS implementa-
tion on two very different link layers. We demonstrate that a single
implementation of a network protocol yields power-aware opera-
tion on links with differing power management strategies. In fact,
we show that optimizations fall out naturally by providing a uni-
fying abstraction that we have not seen implemented in monolithic
approaches. Finally, we show multiple network protocols gaining
mutual benefit by cooperating on a common link abstraction.

2. SP DESIGN
Most deployed sensor networks consist of dense patches of wire-

less nodes, where each patch is connected to the Internet via one or
more gateway nodes, either directly or through some form of transit
network [5, 13, 43, 44]. Unlike the Internet, aggregate communi-
cation is prevalent in sensor networks, whereas point-to-point com-
munication is rare. Although each patch is often an edge network, it
must address many of the issues associated with the Internet. Each
node potentially operates as a data source, data sink, and/or router.
In addition to generating sensor data, nodes must form and main-
tain routes, and forward traffic. The nodes must achieve this despite
noisy, time-varying, and even intermittent connectivity.

These challenges have motivated a wide range of work at the
physical, data link, media access, and network layers. While there
are many options and possibilities at each layer, they are rarely in-
terchangeable. Instead, resource constraints, power management,
and application specific processing have forced many studies to
make numerous assumptions about the surrounding networking ab-
stractions. The variations in these assumptions prevent integrating
individual advancements into a complete solution. For example, the

3Reliability refers to a best effort transmission of the message, not
a guarantee that it will be received by the intended recipient(s).

PS

A kniL ataD B kniL ataD

A rotpadA PS B rotpadA PS

krowteN
1 locotorP

A YHP B YHP

krowteN
2 locotorP

krowteN
3 locotorP

krowteN
ecivreS
reganaM

Link
Estim

ator

Link
Estim

ator

elbaT robhgieN looPgsM

srobhgieN dneS evieceR

Figure 1: Conceptual view of SP architecture. Network ser-
vices interact with various link protocols through SP’s shared
neighbor table and message pool.

PSFQ transport protocol assumes that nearby nodes can overhear
transmissions [51], while TDMA based MAC protocols, such as
IEEE 802.15.4 [49], S-MAC [56], T-MAC [50], and TRAMA [37]
can make this an invalid assumption.

The goal of SP is to provide a unified interface to a wide range
of data link and physical layer technologies that allows network
layer and above protocols to operate efficiently through link inde-
pendent optimizations. By providing a unified interface, SP can
offer a number of advantages over integrated approaches. In par-
ticular, it allows multiple network protocols and link technologies
to coexist and evolve independently of each other in the same way
the IP layer allows transport protocols and link layer technologies
to evolve independently in today’s Internet.

There is one other important advantage of having the SP layer
positioned under the network layer, that is, it makes SP equally
relevant and useful to both the single-hop and multi-hop networks.
Thus, the design of SP is at large agnostic to whether multi-hop or
one-hop sensor networks become prevalent in the future.

Although we considered a variety of alternative design points,
this section describes the approach that we see as most effective
in achieving this goal. Experience has shown that current single
and multi-hop protocols cannot efficiently operate independently
of each other: they must share information. The layers above and
below must be decoupled, but must also cooperate. The principal
design challenge in SP is defining how they cooperate in a simple
but expressive way. This section describes a particular set of con-
cepts that form an SP abstraction. The abstraction could be imple-
mented in virtually any operating system, but the description would
not be complete without describing its interface for some meaning-
ful execution model. We ground the SP concepts with a concrete
implementation on the TinyOS operating system [25].

2.1 Description
Figure 1 shows the general SP architecture: SP bridges the link

and network layers by providing link independent abstractions to
build efficient network protocols. Multiple network protocols co-
exist on a node. Each network protocol is identified by a pro-
tocol id, similar to a protocol type in IP or an AM identifier in
TinyOS. Unlike the Internet where there is only one network pro-
tocol (IP), SP supports many network protocols which implement
a variety of functions, such as collection for data delivery, dissemi-
nation for code updates, aggregation, and others. The primary goal
of SP is to enable multiple network protocols to coexist and work



efficiently. The SP abstraction may be implemented on a variety of
link technologies that expose different physical technologies, en-
codings, framings, media access mechanisms, collision avoidance
protocols, and power management mechanisms. A node employs
one or more link technologies, depending on its hardware capabil-
ities.

SP performs three main operations: (1) data transmission, (2)
data reception, and (3) neighbor management. Data transmission
and reception are message oriented, with a variable message length.
Underlying link protocols dictate a maximum data unit (MDU).
Network protocols may operate relative to the link’s MDU by
querying its size through SP. Next, we discuss the three operations
performed by SP.
Data Reception: A message arriving on a link interface is dis-
patched to its associated network protocol. Optional message fil-
tering may occur at or above the SP layer and discard messages not
destined for the node’s local address or for the broadcast address.
SP takes no position on higher level naming and scheduling issues
other than that nodes have an address on each link interface.
Data Transmission: This operation is implemented using a shared
message pool data structure at the SP layer. Network protocols sub-
mit messages to the pool for transmission. Messages may consist
of multiple packets; however, network protocols only dispatch each
packet to SP when the link is available. Messages are specified with
control information for lower layers, such as reliability and latency
requirements. The pending messages in the pool may be inspected
by the link layer and other network protocols that optimize their
behavior based on the pool’s content. After transmitting a mes-
sage, SP provides feedback to the network protocol. This feedback
includes various information, such as congestion status, that may
help the network protocol to optimize its behavior.
Neighbor Management. SP allows the link layer and network pro-
tocols to cooperatively maintain an effective summary of useful
immediate neighbors. This is achieved through a neighbor table
data structure, which maintains information about link quality and
power scheduling (when the node should be awake or asleep). SP
mediates the interactions between network protocols and one or
more specific links. Rather than a rigid separation of these lay-
ers, SP allows network and link layers to cooperate through its
neighbor table and message pool structures.
Below, we present the two main data structures maintained by
the SP, the neighbor table and the message pool, in more detail.

2.2 Neighbor Table
Typically, network protocols maintain information about their

neighbors in order to make informed decisions for routing, aggre-
gation, and dissemination. Similarly, the link layer maintains infor-
mation about the state of the link to particular neighbors. The mu-
tual interest in neighbor-related information has often led to mono-
lithic designs. For example, MintRoute [53] in the TinyOS distri-
bution combines link reliability information for its direct neighbors
with path metrics (e.g., hop count, expected path cost) for routing
to a root node. Likewise, slotted link protocols presented in [37, 50,
56] monitor neighbors to maintain synchronization and connectiv-
ity. Whereas network protocols sometimes include link function-
ality, such as in MintRoute, and link protocols like S-MAC some-
times include network functionality, UNPF [4] proposes a single
unified layer must include both link and routing information. Such
a monolithic approach is not suitable for enabling innovation at the
network layer in sensornets.

As sensor networks mature and multiple network protocols co-
exist, it becomes increasingly attractive to share information among

various network protocols, rather than require each of them to
maintain its own table. The neighbor table is the main repository
of this shared information. It enables cooperation between network
protocols and the link layer, and allows SP to decide when to listen,
receive, transmit, and sleep. The insertion and eviction of entries
in the neighbor table are deferred to network and link protocols to
cooperatively decide which entries belong in the table.

An entry in the neighbor table usually consists of the address of
the neighbor, link quality, and scheduling information. For added
flexibility, the table is extensible—network services and link pro-
tocols may add columns to it, such as routing gradients or coordi-
nates. Entries in the neighbor table are indexed by a combination
of destination address and network interface: SP assumes that all
nodes accessible through a given link interface have unique link
addresses. The format of the addresses are not specified by SP to
allow different link addressing modes.

SP requires scheduling information in the neighbor table indicat-
ing when each neighbor is expected to be awake and asleep. Since
power is the critical resource, both network and link protocols use
neighbor schedule information to determine which actions to take
and when these actions should be performed. However, the hori-
zon of this information within SP is limited. When the known
communication schedule of a neighbor expires, SP asks the net-
work and link layers to determine a new schedule. For example, a
slotted MAC layer may respond with the next beacon slot whereas
a rendezvous-based network protocol may respond with the next
meeting time.

Studies have shown that in many cases the set of candidate neigh-
bors (e.g., recently heard nodes) is much larger than the set of use-
ful neighbors (e.g., neighbors which can provide a reasonable reli-
able link) and too large to retain in the memory of most microcon-
trollers [53, 57]. Thus, neighbor table management is critical. SP
enforces as little policy as possible on neighbor management; in-
stead, it implements management mechanisms that are applicable
for a wide range of uses.

If the link detects a new neighboring node, it notifies SP. SP
asks each network protocol whether the node should be added to
the table. When a neighbor’s scheduled active period has expired,
network and link protocols are notified so that they can update the
neighbor’s schedule information. When a node is evicted by a
protocol, all other network protocols are notified of the eviction.
When multiple network protocols are present, rather than define
the resource sharing policy, SP depends on the presence of an op-
tional network service manager to mediate resource conflicts.

2.3 Message Pool
The message pool allows network protocols to request message

transmissions. The transmission interface enables the network pro-
tocol to exert a degree of control over lower level message process-
ing, and provides feedback from the link layer.

A key design issue of the message pool is how much informa-
tion to expose to network and link protocols. The more visibility
the link layer has on potential future transmissions, the better it can
schedule traffic to reduce energy and avoid contention. For exam-
ple, a slotted or TDMA link might want to transmit messages with
different destinations in the same slot, whereas a CSMA link with
preamble sampling might want to batch messages to a given desti-
nation so that a single long preamble can wake up the destination
for the entire batch. These link optimizations motivated our deci-
sion to use a pool. As evident from this discussion, the network
protocols should give the link layer enough flexibility to schedule
traffic efficiently. Storage available for the message pool is limited,
and thus the decisions should be made in a timely fashion.
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Figure 2: The SP send process stores an SP message in the pool,
schedules it for transmission, and then requests the next packet
in the SP message. Note that all message and packet storage is
created by the network service advocating a “pay for what you
use” policy.

The message pool contains references to messages, which can
be accessed out of order. The messages are not stored in the SP
layer; they are either stored in the network or the link layers. A
message may consists of multiple packets. Similar to lazy task cre-
ation [32], packets are only handed off to SP when resources and
the underlying communication medium become available.

Each message pool entry contains a reference to the next packet
to be sent, the number of the remaining packets in the message, and
notification when the next packet should be materialized. The con-
cept of specifying the number of packets that a service intends to
send instead of the actual packets is called message futures. Mes-
sage futures only require that the next packet in a message be real-
ized and passed to SP when requested. SP only asks for messages
serially, and only after the current packet has been transmitted. By
not initally specifying all of the packets in a sequence, services may
allocate less message buffers and reduce memory and processing
resource usage by only filling buffers when needed. Message fu-
tures are useful for a wide range of network protocols. Code prop-
agation may only load the next code page when needed. Applica-
tions may store sensor data in flash that is retrieved and transmitted
during rendezvous periods with a node’s parent.

Figure 2 shows the operation of sending a message using SP.
An SP message is submitted to SP (1), whose pointer is added to
SP’s message pool (2). SP decides when it is appropriate to send
the first packet based on batching and link protocol inspection of
the neighbor table (3). After the transmission completes (4), SP
requests the next packet in the SP message (5). The SP message
pointer is updated to point to the next packet buffer (6).

The message pool allows network and data link protocols to pass
message information to each other. The send interface presents a
packet buffer to SP along with simple indicators of latency sen-
sitivity and need for reliability on the transmission. SP facilitates
bi-directional exchange of control information through this control
and feedback information. A network protocol can indicate that a
particular message entry is latency critical by setting an urgent bit,
which informs the link layer to treat it as high priority or to send it
soon even if extra energy is expended to do so. The level of effort
that should be expended transferring a message is indicated by a
reliability bit, which informs the link layer to acknowledge and re-

transmit a message for a predefined number of times. The control
mechanism provides guidance to lower layers which will attempt
to optimize for power and channel efficiency.

After transmission, lower layers send feedback to the network
protocol to adjust its behavior. For instance, if a message requested
reliable transmission, SP notifies the network protocol if the de-
sired level of reliability has been achieved. The link layer could
inform the network protocols that the transmission rate is too high
to sustain by setting a congestion bit. In another example, con-
sider a typical sensor network application that generates traffic at
regular intervals. Even at low duty cycle, this traffic pattern can
result in high contention if sensor samples are highly correlated.
One solution to this problem is to stagger the data transmissions
across neighboring nodes. SP support staggering by sending phase
shift feedback indicating when such a shift would be beneficial.
SP provides a delta time recommendation for future traffic to pre-
vent correlated behavior in sensornet applications. For example,
the nodes may take samples at time correlated instances and then
transmit them. Phase recommends to the network layer that if it
sent its message at a different time, it may achieve less congestion
or greater power savings. If SP detects congestion, SP queries the
link protocol for a suitable phase shift. The phase shift is added to
the delay incurred between submission of the message to the pool
and the actual transmission. Phase shift recommendations are de-
termined by the semantics of the link protocol; two mechanisms
are to count the number of backoff events on a CSMA link or count
the number of reserved slots in a TDMA protocol.

2.4 Discussion
Our current design of SP emphasizes minimalism: SP includes

only the set of features that we considered absolutely necessary
to develop applications in a sensor network environment. Primar-
ily, these features follow from the need to balance the application
requirements, on one hand, and to efficiently use the available re-
sources, on the other hand. Given the extreme scarcity of resources
in a sensor network, achieving efficient resource utilization is not
only desirable, but necessary. This is the main reason for which the
SP interface is necessarily more complex than the IP interface (the
corresponding “narrow waist” of the Internet).

SP provides three functionalities that are only partially sup-
ported, or not supported at all by IP: (1) allows the link layer to
provide congestion indication and schedule hints (e.g.,phase shift
feedback) to the network protocols, (2) allows a network protocol
to request an urgent and/or reliable service, and (3) enables network
protocols and the link layer to share the link information.

Network protocols use the congestion indication and schedule
hints received from the link layer to schedule its future transmis-
sions in order to optimize resource utilization. For example, upon
receiving a congestion indication, the network protocol can slow
down to reduce the probability of message loss, or aggregate traffic
to reduce the number of transmissions. Note that unlike IP where
the congestion is signaled end-to-end, with SP the congestion is sig-
naled at every hop. Architecturally, this design decision is justified
by the fact that, unlike an IP router whose main role is to forward
packets, a typical node in a sensor network runs also application
code, which can process data locally, if needed.

In order to optimize for the energy usage, the data link layer
needs to have knowledge about the application’s delay and relia-
bility requirements. SP allows network protocols to provide this
information by associating a priority and a reliability bit with each
message (see Section 3 for details). Whenever these bits are not
set, SP in conjunction with the link layer aggressively optimize for
energy usage by batching packets whenever possible.



interface SPSend {
command result_t send(sp_message_t* msg);
event void sendDone(sp_message_t* msg, result_t success);
event TOS_MsgPtr nextSend(sp_message_t* msg, uint8_t pos);
command result_t changed(sp_message_t* msg);
command result_t cancel(sp_message_t* msg);

}

Figure 3: The SPSend interface.

Finally, allowing network protocols and the link layer to share
link information eliminates the need for each network protocol to
maintain its own neighbor table. The advantage of sharing this
information in the context of resource management is twofold: it
reduces the storage requirements, and avoids redundant measure-
ments to estimate the link quality.

3. IMPLEMENTATION
To evaluate the feasibility of our approach and to make the pro-

posal concrete, we implemented our SP abstraction in TinyOS. We
discuss how SP is implemented, including the neighbor table, mes-
sage pool, and minimal set of commands and events to build net-
work protocols. The implementation is quite lean and completely
event driven. Three types of events trigger SP to act: message re-
ceptions and other link protocol events, network layer commands,
and internal timer events.

Network protocols issue send requests to SP using the SPSend
interface, shown in Figure 3, which takes a single parameter, a
pointer to an sp message t structure. Figure 4 shows a par-
tial version of the sp message t structure (it has an additional
7 bytes of state, such as the time the message was submitted to SP,
used for internal bookkeeping and metadata). The send command
places a reference to the SP message in the message pool and SP
schedules it for transmission. SP implements the reliability and ur-
gent control bits. Urgency is treated as a priority mechanism—SP
services urgent requests before others—but also is used to override
the default power management schedule. Extra energy may be in-
vested to wake up the destination in order to transfer the message
quicker. Messages that are not marked as urgent are held in the
message pool. If the neighbor has a known wakeup period or if
other traffic for that neighbor is received, the SP attempts to send
the pending data. Otherwise, after the message has been waiting
in the pool for longer than a specified timeout, SP tries to send
the message more aggressively in the same manner as urgent mes-
sages (but with less overall priority). If reliability is set, SP will
use acknowledgments, retransmissions, or whatever mechanisms
the underlying link provides to deliver the message.

When SP has completed transmission of the message, it signals
the sendDone event informing the associated network protocol.
If SP does not succeed in acknowledging delivery of a message
marked reliable, it resets the reliability field to false to give feed-
back to the higher layer. Congestion tells the network layer whether
the link layer observed a congested channel when the message was
sent. Congestion allows saturation conscious protocols (such as
floods) to react accordingly or reduce their message generation rate.
Note that the threshold for setting the congestion bit may be differ-
ent (and is higher in our implementation) than the threshold for
providing a phase shift to network protocols.

The SPSend interface allows the network protocol to use mes-
sage futures by setting the number of packets that are ready to fol-
low the current one. If this count is non-zero, SP can signal the
nextSend event to cause the network protocol to materialize the
next packet. It may be generated from application data, data in
EEPROM, or from a higher level buffer. Without imposing a large
amount of RAM pressure, this allows the link layer to burst pack-
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interface SPNeighbor
{
// Query and iterate through neighbors
command sp_neighbor_t* query(uint16_t address);
command sp_neighbor_t* get(uint8_t i);
command uint8_t max();

// Adding, admitting, updating and removing neighbors
command result_t insert(sp_neighbor_t* neighbor);
command result_t remove(sp_neighbor_t* neighbor);
event void update(sp_neighbor_t* neighbor);
event result_t admit(sp_neighbor_t* neighbor);

// Expiry (update with new timing) and Eviction
event void expired(sp_neighbor_t* neighbor);
event void evicted(sp_neighbor_t* neighbor);

// Adjust n’s link quality based on message m
command result_t adjust(sp_neighbor_t* n, TOS_MsgPtr m);

// Listen to the specified neighbor on next wakeup
command result_t listen(sp_neighbor_t* neighbor);

// Try to find more neighbors
command result_t find();
command result_t findDone();

}

Figure 5: The SPNeighbor interface.

ets when it has opportunity to do so, or to schedule packets into
upcoming slots. Alternatively, network protocols can verify if reli-
ably transmission was achieved and choose to retransmit or change
the SP message’s parameters.

Network protocols can modify the status of on-going message
streams using the change and cancel commands. After a mes-
sage is submitted, the network protocol may cancel the outgoing
message. Activities at the network layer may cause the contents
of the message to change. For example, a routing protocol may
receive a new route beacon that causes its parent to change. The
network protocol may reset the destination of its pending messages
and notify SP using the change command. Cancel removes a mes-
sage from the pending message pool. It is particularly important for
suppression in many dissemination protocols.

SP provides the SPNeighbor table interface presented in Fig-
ure 5 to allow maintenance of the neighbor table by the link and
network protocols. Figure 4 shows the default TinyOS SP neigh-
bor table. It provides five pieces of information: address, time-on,
time-off, listen, and link quality.



Time-on and time-off fields indicate when the neighbor can re-
ceive messages in terms of local node time so that link layers can
minimize idle listening. Network protocols can incorporate link
constraints in generating communication schedules using timing in-
formation. For a fully active CSMA-based MAC, time on is always
“now” and time off is always “never.” In contrast, for a TDMA-
based MAC, the values correspond to the next time slot and its
duration. Our SP implementation favors sleeping over listening in
order to reduce the node’s duty cycle. If a message is pending for a
neighbor, SP will wake up and send it according to the neighbor’s
time-on in the table. If no message is pending, SP will remain
asleep, regardless of when that neighbor is awake. Therefore, the
time-on and time-off fields are indicators of when the remote node
is listening. In the opposite direction, if a neighbor’s listen bit is set,
SP will explicitly wake up and receive from that neighbor. This al-
lows bi-directional low power communication. An example use of
the listen bit is dissemination in a tree topology. Nodes periodically
send to their parent during their parent’s active period. Parents can
broadcast data down the tree to their children during their active
period. If the listen bit is not set, children will not wake up and
receive from their parent if they do not have any pending messages
to send to the parent. The listen bit also permits network protocols
to snoop on traffic from other nodes.

SP uses a cooperative scheme to manage neighbor table mem-
bership and does not enforce policy on the neighbor table contents.
When a protocol requests that a neighbor be added to the table, it
calls the insert command. SP queries all other protocols with the
admit event—if any of the protocols indicate an interest then the
neighbor is added to the table. The admit event allows protocols
to determine which action to take, including which entry to evict.
Since SP generally does not have enough information to determine
neighbor schedules on its own, it signals both network and link
protocols on neighbor expiration to attain wakeup schedules using
the expired event. For example, if a TDMA MAC or a higher
level scheduling protocol knows when the neighbor will next be
awake, it can update the entry correspondingly. To remove an en-
try, protocols call remove which nullifies the entry and signals an
evicted event to link and network protocols.

Protocols may scan the neighbor table using the iteration com-
mands found in the SPNeighbor interface. Protocols query the
max command to query the maximum number of neighbors in the
table and then use get to retrieve the neighbor. After receiving
a message, protocols may request that the link adjust a neighbor’s
link quality entry through the adjust command by passing the
neighbor table entry and received message. The link uses its link
estimator to update the neighbor entry.

If the entries in the neighbor table are sparse, protocols may
request that SP find new neighbors. The underlying find com-
mand may be implemented in numerous ways—either through ac-
tive probing, passive scanning, or enabling channel sampling.

Our implementation includes a special reserved broadcast neigh-
bor entry. The broadcast entry is used for the link and network pro-
tocol to inform SP of times when it is safe to send to the broadcast
address. The shared broadcast entry allows network wide synchro-
nized wakeup and local cell broadcast slots to be implemented with
the same framework.

Protocols may add columns to the neighbor table for additional
neighbor state. In our implementation, columns may be redefined
by manual editing of the table entry structure at system build time.
(Alternatively, the newly emerging nesC feature of attributes [11]
may simplify this process.) The update event allows protocols to
enter initial data into non-standard neighbor entries upon admission
to the table, or after updated by other protocols. Neighbor data is
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Figure 6: An IEEE 802.15.4 superframe consists of a MAC bea-
con message followed by a CSMA contention period for other
traffic. The duty cycle is bounded by superframe to beacon
frame ratio.

updated through the insert command—if the neighbor is already
in the table, its values are simply refreshed and an update event
is signaled.

4. LINK PROTOCOLS
The novel constraints of sensornets—particularly, energy

conservation—have led to many proposed protocols for media ac-
cess control (MAC). These protocols fall into two basic classes:
slotted protocols and sampling protocols. In slotted protocols,
nodes divide time into discrete intervals (slots) and schedule
whether the radio is in receive mode, transmit mode, or powered
off in terms of these slots. Synchronizing slots with neighbors al-
lows nodes to only power the radio on when needed, significantly
reducing idle listening. Slotted protocols are often rigid; after they
establish a schedule, a node can usually only communicate with
other nodes on the same schedule. Short communication periods
can lead to increased contention, plus synchronization maintenance
costs both power and bandwidth. Slotted protocols include the
TDMA family of protocols [12, 21, 39, 42], IEEE 802.15.4 [49],
S-MAC [56], T-MAC [50] and TRAMA [37].

The second class, sampling protocols, take a different approach.
Rather than coordinate time slots, nodes periodically wake up, and
only start receiving data if they detect channel activity. Depending
on the underlying physical layer, this detection can either be based
on channel energy or successful symbol decoding. Periodic chan-
nel sampling allows a node to conserve energy by keeping its radio
off most of the time. In contrast to slotted protocols, sampling pro-
tocols are very flexible: a node can communicate with any other
node within its radio range. Flexibility comes with a cost, however.
Unlike slotted protocols, which send regular data packets, sampling
protocols must send long, expensive messages to wake up a neigh-
bor. Examples of sampling protocols include Aloha with preamble
sampling [6], B-MAC [35], WiseMAC [7].

To explore whether SP can be an effective abstraction for both of
these classes of MAC protocol, we implemented it on an example
protocol from each. For a slotted protocol, we chose IEEE 802.15.4
on the Telos [36] platform; for a sampling protocol, we chose the
standard TinyOS mica2 networking stack (B-MAC on top of the
Chipcon CC1000 radio [35]). We present each protocol and explain
how the SP abstractions map to their capabilities.

4.1 Slotted Protocols
We used the IEEE 802.15.4 protocol (referred to as “15.4” here-

after) as our reference slotted protocol due to its widespread avail-
ability and use by Zigbee. 15.4 supports star and peer topologies;
for this study we chose to only use the peer topology (every node
is a “coordinator”) since it maps more closely with existing sensor
network protocols. Since each node acts as a coordinator, it peri-



odically sends a beacon message with its schedule. Neighboring
nodes receive and synchronize with that beacon. Figure 6 shows
an example beacon period. In order to find beacons of neighboring
nodes, 15.4 provides a scan command.

SP allows the 15.4 MAC to control its own beacon schedule.
Each time a beacon is received, the timing information from that
beacon is inserted into SP’s neighbor table. When the beacon pe-
riod expires, SP asks the link and network protocols to renew the
expired entry—in this case, 15.4 updates the entry to the next ex-
pected beacon period for that neighbor. Each time a neighbor’s
beacon time arrives, SP checks if it has messages to send to that
neighbor or if the listen bit is set. If either is true, SP instructs
15.4 to listen to the channel until the end of the beacon period.
When the period expires, SP tells 15.4 that it has finished listening
to the channel. This mechanism allows network protocols to listen
during periods that are not associated with beacons and passes link
wakeup information up the stack.

For broadcast messages, SP uses the broadcast neighbor table
entry to determine if it can send to the broadcast address. If no
information about the broadcast communication period has been
recorded, our SP implementation sends the message using unicast
by cycling through all the known neighbors. Alternative SP imple-
mentations could explicitly establish a broadcast slot.

If the neighbor table population is sparse, network protocols may
request SP to find new neighbors. On 15.4, SP requests a beacon
scan, which will find any neighbors with 15.4 beacons. Any proto-
col (network, link, or SP) may halt the neighbor scan.

Link estimation is performed by using the 15.4 LQI metric. The
link quality indicator (LQI) is calculated from a correlation value
that all 15.4 radios are required to provide to the MAC protocol.
Any time that a service receives a message, it can ask SP to adjust
the quality of a neighbor based on the received message. SP then
asks 15.4 to compute the link quality which is updated in the neigh-
bor table. When reliability is requested for a message, SP enables
15.4 link layer acknowledgments. If an acknowledgment fails, SP
retries the message up to a threshold.

4.2 Channel Sampling Protocols
We used the default mica2 MAC protocol for our implementa-

tion of SP above a sampling protocol. The “Low Power Listen-
ing” (LPL) mechanism (part of B-MAC) and protocol hooks are
described in [35]. Each node wakes up, samples the channel for
activity, and returns to sleep. We added information to the MAC
header in B-MAC to support synchronization and source address-
ing for neighbor state maintenance.

When a packet is sent with a long preamble, synchronization
information is extracted and the neighbor is inserted with its LPL
sampling schedule. If a message is destined for that neighbor, SP
will wake up the radio prior to the sampling time of the remote
host and transmit the data with a short preamble. The neighbor
will wake up and sample the channel at its normal interval, detect
activity, and receive. If the destination is an unknown neighbor or
broadcast address, the packet will be sent with a long preamble to
wake up all surrounding nodes.

Since SP maintains a message pool, it can “piggyback” data after
receiving messages from neighboring nodes. If a neighbor sends
a packet with a long preamble, other nodes that receive the long
packet may transmit their packets with short preambles immedi-
ately following the long preamble packet. If a message is not ur-
gent, SP takes advantage of piggybacking by waiting for others to
send a long preamble. Collisions are mitigated by a small random
backoff while piggybacking. If a single node has multiple packets
to piggyback, our B-MAC implementation continues to transmit

the preamble symbol, thereby holding the channel, while asking
SP if there are additional packets to send.

Like 15.4, if reliability is requested, SP enables B-MAC’s link
layer acknowledgments and retries if a message send is unsuccess-
ful. After a few unsuccessful tries, SP uses long preambles to try
to communicate with the neighbor more aggressively. For broad-
cast packets, SP will either piggyback on a long preamble packet
or send with a long preamble if the message is past due.

Two forms of neighbor estimation are included with our SP im-
plementation. A basic RSSI link estimator provides coarse infor-
mation about the link quality. Alternatively, a packet-error-rate es-
timator includes a sequence number only in messages with long
preambles. The link quality is calculated from the fraction of re-
ceived messages.

5. NETWORK PROTOCOLS
To determine whether SP is an effective abstraction to the net-

work layer, we chose three representative protocols from the lit-
erature and implemented them in terms of SP: collection routing
(MintRoute [53]), data dissemination (Trickle [26]), and data ag-
gregation (Synopsis Diffusion [33]). In this section, we describe
their implementation, and defer an evaluation of their performance
to Section 6.

5.1 Collection Routing
MintRoute is a collection routing protocol that chooses a par-

ent based on the expected number of transmissions (ETX) to the
root of a collection tree [53]. Implementations commonly estimate
ETX using additive link qualities, where zero represents a perfect
link.4 A parent’s quality is its advertised value, sent periodically
via route update beacons, plus the quality of the link between par-
ent and child (lower values are better). MintRoute uses per-hop re-
transmissions to make additive quality an accurate measure (with-
out retransmissions, ETX would be multiplicative due to the loss
potential at each hop as the packet travels across the network).

Our implementation of MintRoute that uses SP sends two kinds
of traffic, neither of which is marked urgent: route update beacons,
which it broadcasts, and data messages, which it unicasts to the
currently selected parent. Our implementation runs on both mica2
and Telos platforms without any code changes. The two types of
traffic, route updates and data packets, encounter different handling
techniques by the B-MAC and 15.4 link protocols.

MintRoute sends route beacons to the broadcast address. For the
mica2, route beacons wake up remote nodes using long preambles.
In contrast, our 15.4 implementation sends broadcast messages
through a unicast round-robin emulation if no broadcast schedule
is established. If the neighbor table has no good potential par-
ents, MintRoute requests that SP find new neighbors using the
SPNeighbor interface. On Telos nodes, the find command
maps to 15.4’s scan functionality to repopulate the neighbor ta-
ble. On the Mica2 platform, SP simply continues using Low Power
Listening to receive long messages.

MintRoute’s multihop routing “engine” is responsible for data
packet transmissions, for both local packets and forwarded packets.
MintRoute maintains a send queue to buffer packets waiting to be
sent. MintRoute uses the quantity field of its SP message set its
queue size. Through message futures, SP bursts pending multihop
messages when the destination is available. Data packets are sent
with reliability turned on. They are retransmitted by the link and
MintRoute is notified if the transmission was successful.

4The TinyOS CVS repository has one example implementation:
tos/lib/MintRoute/.



Link estimation was a major component of early MintRoute im-
plementations. As it was specific to MintRoute, this information
could not be easily shared. Integration of the link estimator into
MintRoute caused the TinyOS distribution to fork into numerous
MintRoute implementations, each with a different integrated link
estimator. Over time, these implementations diverged and are now
very difficult to maintain [24]. Since SP provides link estimation
information through its neighbor table, MintRoute only adds par-
ent quality information (the parent’s own ETX) and hop count to
the default neighbor table fields. If MintRoute chooses a new par-
ent, it updates outstanding SP messages with the new parent and
calls SP’s changed command to notify SP. If MintRoute does not
hear three consecutive route update messages, it evicts that neigh-
bor from the table.

MintRoute handles the admit and evicted events from SP.
When another service tries to admit an entry to the table (such
as 15.4 receiving a neighbor’s beacon), MintRoute checks if the
neighbor is a potential parent by looking at its ETX (received from
route beacons). If the estimate is “good”, above a threshold or
better than existing neighbors, MintRoute allows SP to add the
neighbor to the table. If a node is evicted, MintRoute handles the
event and checks if SP evicted the current parent. If so, MintRoute
chooses a new parent and inspects the neighbor table population.
If the neighbor table become sparse, MintRoute calls the find
command in the SPNeighbor interface to repopulate the list of
potential parents in the SP neighbor table.

5.2 Dissemination
Trickle is an algorithm for suppression-based data dissemina-

tion [26]. Nodes periodically advertise what data they have, un-
less they have heard other nodes advertise the same data recently.
Trickle scales the length of advertisement periods depending on
whether a node has heard new data. By default, when a period
ends, Trickle makes the next period double the size of the previous
period, up to a maximum. When Trickle hears something new, it
makes its period very small, so the node that has something new
can hear that others need an update. Suppression allows Trickle to
scale to dense networks, while scaling advertisement periods en-
ables rapid dissemination with low overhead when all nodes have
the current data.

The SP Trickle implementation is extremely simple; running on
both mica2 and Telos platforms without any code modification.
Trickle sends only broadcast messages, none of which are marked
as urgent. Congestion and phase feedback are not considered as
Trickle performs its own form of congestion control. However,
the basic Trickle algorithm assumes that nodes can atomically and
instantly broadcast to all of their neighbors. Delays between mes-
sage submission and actual transmission can come from multiple
sources: SP may delay the transmission of the message to optimize
overall node behavior, CSMA-based networks may require back-
offs for collision avoidance just like TDMA-based networks may
need to wait until a broadcast slot arrives. During the time be-
tween message submission and transmission, advertisements may
arrive that cause suppression to fail. Our implementation of Trickle
uses the cancel command of the SPSend interface: if there is
a broadcast pending when Trickle receives a suppressing message,
it cancels the broadcast. SP’s unifying interface allows Trickle to
operate efficiently without any knowledge of the specific link pro-
tocol. Additionally, the link protocol need only provide a best effort
broadcast mechanism since epidemic protocols are designed to ef-
ficiently handle unreliable broadcast.

Deluge [16] is a bulk data dissemination protocol built on top of
Trickle; nodes make requests for data in response to Trickle adver-

tisements of newer data. Due to Trickle’s suppression mechanism,
the advertisements effectively create clusters where requests elect
nodes to transmit large chunks of data.

The SP Deluge implementation makes extensive use of message
futures to keep resource usage to a minimum. As each message is
transmitted by SP, Deluge pre-fetches the next message from ex-
ternal flash. Through the message futures mechanism, Deluge can
realize large and quick data transfers in a power efficient manner
while using minimal resources.

Deluge adds broadcast information to its advertisement mes-
sages that inform neighbors of transmission periods and recorded in
SP’s special broadcast neighbor entry. As described in [16], Hui de-
signed Deluge to operate without any neighbor information to elim-
inate state and complexity. With SP providing a shared neighbor
table, Deluge can now take advantage of any available link quality
information with minimal added state and complexity. By limiting
activity to neighbors with high quality links, contention and packet
drops can be reduced. This simple optimization significantly im-
proves propagation rate and energy consumption [17].

5.3 Aggregation
Synopsis Diffusion (SD) is a simple and space efficient approach

for estimating whole-network aggregate data values, such as max-
imum, count, mean, mode, and median [33]. Synopsis diffusion
computes estimates with order and duplicate insensitive (ODI) ag-
gregates. This allows nodes to freely exchange aggregate values,
safely taking advantage of opportunistic receptions. A user can
achieve a desired synopsis accuracy by averaging over a series of
independent estimates. SD differs from Trickle by sending esti-
mates of an aggregate value towards a collection point whereas
Trickle disseminates updates away from a collection point. The
details of how the synopsis calculation at each node is computed is
discussed in detail in [33].

SD requires a gradient to the collection point in order to expire
old ODI values. SD, by itself, has no mechanism to create a gra-
dient. Our implementation creates its own gradient by a simple
hopcount added to all ODI messages. If SD runs in conjunction
with another network service that creates a gradient, it uses the
shared neighbor table to determine the direction of the collection
point. Specifically, when running with MintRoute, SD queries the
SP neighbor table and extracts MintRoute’s neighbor hopcounts.

Every node periodically broadcasts a packet containing its cur-
rent aggregate value. Using the SP send interface, it declares that
the ODI message does not require reliability nor urgency. When
a node hears an ODI value, it only aggregates if the source is fur-
ther away from the collection point. Since each synopsis is a pe-
riodic calculation that is broadcast, the timing of the broadcast is
not critical. Urgency is not required so SP and the link work to-
gether to batch ODI messages with other broadcast data in order to
save power. SD calculates aggregates in a periodic manner local
to the node’s time, unlike Trickle, thus message timing is not criti-
cal for correct operation. Aggregates that are received by a higher
level node (closer to the collection point) are collected into a sin-
gle synopsis; so suppression is inherently built into the aggregation
algorithm. Reliability is not necessary since only one node must
receive a lower node’s synopsis in order to aggregate it. The algo-
rithm accounts for loss by averaging over many synopses received
at the collection point.

6. RESULTS
In this section we evaluate the performance and complexity of

running network protocols from Section 5 through SP. Our bench-
marks validate that our SP design does not sacrifice communication
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or power efficiency in single and multihop protocols as compared
with existing implementations despite presenting network proto-
cols with a unified link abstraction.

For our tests, we used the mica2 B-MAC protocol5 below our SP
implementation as described in Section 4.2. On the Telos (Revision
B) platform [36], we added a reduced functionality 802.15.4 pro-
tocol that performs neighbor synchronization, beaconing, acknowl-
edgments, and coordination above the default CC2420 networking
stack from TinyOS. We implemented the SP interface for the 15.4
stack as described in Section 4.1.

6.1 Single Hop Benchmarks
By using the SP abstraction instead of directly interfacing with

the link protocol, network services should not lose performance or
power efficiency. If either of these conditions are not met, protocol
designers may be motivated circumvent the abstraction to achieve
the best performance. To illustrate how SP handles message trans-
mission and reception, we performed bandwidth and load studies
on the mica2 and Telos platforms using SP.

We first tested SP’s ability to submit pending messages effi-
ciently to the link protocol for transmission. One transmitter was
programmed to deliver messages at a given load to a single receiver
in a one-hop network. Figure 7 shows the offered load and deliv-
ered load running SP on both 15.4 and B-MAC. In both cases, as
the offered load increases, SP delivers the load to the receiver. As
the load approaches the channel capacity, SP delivers data at almost
90% of the channel capacity across both links. As we vary the 15.4
duty cycle, SP is able to adapt and achieve good results regardless
of the underlying link power management strategy.

In order to directly compare the overhead of SP and evaluate the
efficacy of our feedback mechanisms, we placed a number of nodes
in a circle with a single receiver in the middle. We measured the
delivered packet throughput at the receiver and varied the number
of nodes in the cell. This test is a direct comparison between SP
and the single hop bandwidth test presented in [35], verified by
reproducing the data from [35], and is shown in Figure 8.

First, examine the difference in throughput between B-MAC and
SP with no power management. As the number of nodes increases,
B-MAC’s performance decreases much more quickly than SP. We
attribute this decrease due to the single-packet interface provided
by B-MAC. Since SP is batching messages and then sending them
in bulk when the channel becomes available, it can achieve more
channel bandwidth than MAC protocols that operate on only a sin-
gle packet at a time. While optimizations could be implemented
5We used tinyos-1.x/contrib/ucb/tos/CC1000Pulse
as of April 1, 2005 as the source for B-MAC as per [35].
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Figure 8: Delivered throughput using SP’s control and feed-
back mechanism on the mica2. Each node transmits as quickly
as possible. Congestion control (CC) and phase adjustment are
implemented at the network layer using SP

in the monolithic approach, our SP architecture provides a sepa-
ration of concerns allowing protocol designers to focus their effort
on their protocol. This simplifies protocol implementation and does
not require entire sets of protocols to be integrated together in order
to co-exist within a system. Of more value is the observation that
SP did not decrease performance while acting as an intermediary
between the network and link protocols.

We examined the impact of “piggybacking” on low power op-
eration. SP with B-MAC’s LPL sends long preambles when the
channel is idle. Other nodes may piggyback their data on the long
preamble packet. As the load increases, most traffic is sent using
short preambles. This allows SP with low power listening to ramp
up to the full bandwidth of the channel, quickly transfer data, and
return to sleep. SP with LPL performs identically (within 3% in all
cases) to SP without LPL and therefore is omitted from Figure 8.

Finally, we tested the congestion and phase feedback of SP to
build a congestion control protocol above SP. In our congestion
control (CC) implementation, we used an additive increase, addi-
tive decrease (AIAD) scheme due to the low bandwidth of the chan-
nel. When the quantity field of the message became high or the
congestion bit was set, we decreased the message generation rate.
Likewise, if the congestion bit is not set and the quantity field of
our SP message goes to zero, we increase our generation rate. The
results show that effective congestion control schemes can be built
independent of the underlying link protocol. When phase feedback
is provided, we change the phase that the congestion control algo-
rithm submits packets to SP.

We performed the same bandwidth measurements on the 15.4
MAC at duty cycles of 1.5% and 12.5%. Figure 9 shows our re-
sults at both duty cycles. With only a single node, SP’s bandwidth
is very close to the channel limit. The increased delivery of SP
is caused by message futures—when the first packet is sent, clear
channel estimation is disabled for the remainder of the packets in
the message. We observe that as the number of nodes increases,
delivered bandwidth drops significantly unlike in the mica2 tests.
Because 15.4 radios are faster than microcontrollers, it takes ap-
proximately 1.8 ms to load the next packet into the radio’s packet
buffer plus 450 µs to switch from receive to transmit mode. During
this time, other nodes may sense a clear channel and the result is a
collision. Our results show that both the non-SP and SP implemen-



0 5 10 15 20
0

500

1000

1500

2000

2500

Nodes (n)

T
hr

ou
gh

pu
t (

bp
s)

802.15.4 Raw Interface
802.15.4 with SP
802.15.4 with SP + CC
1.5% Duty Cycle Channel Capacity

(a) IEEE 802.15.4 and SP at 1.5% duty cycle

0 5 10 15 20
0

2500

5000

7500

10000

12500

15000

17500

20000

22500

Nodes (n)

T
hr

ou
gh

pu
t (

bp
s)

802.15.4 Raw Interface
802.15.4 with SP
802.15.4 with SP + CC
12.5% Duty Cycle Channel Capacity

(b) IEEE 802.15.4 and SP at 12.5% duty cycle
Figure 9: Delivered throughput of a single hop channel running 15.4 at 1.5% and 12.5% duty cycles under congestion. Each node
transmits as quickly as possible–more nodes lead to more channel congestion.

Component RAM Msgs Flash
mica2

TinyOS Engine 34 784 840
TinyOS Neighbors 371 49 1924
TinyOS Total 405 833 2764
SP Engine 50 784 870
SP Neighbors 13 67 1104
SP Total 63 851 1974

Telos
TinyOS Neighbors 400 44 1884
TinyOS Engine 34 704 848
TinyOS Total 434 748 2732
SP Engine 52 704 874
SP Neighbors 13 64 1244
SP Total 65 768 2118

Table 1: Comparison of the code and memory usage of
MintRoute in TinyOS and MintRoute built above the SP ab-
straction. Engine relays multihop messages from the applica-
tion to the link protocol. Neighbors performs neighbor man-
agement. RAM is the memory usage, Msgs is the amount of
RAM used by message buffers, and Flash is the code size in
bytes.

tation suffer from this effect. If the underlying MAC made better
carrier sense decisions, SP would also benefit. In Figure 9(a), con-
gestion control results in the highest throughput, especially in high
contention.

6.2 Multihop Benchmarks
We measured the performance of the network protocols de-

scribed in Section 5 to determine the overhead imposed by SP.
These tests allowed us to verify with real sensor networks that the
primitives provided are sufficient for sensor network protocols.

First, we studied the efficacy of our single MintRoute implemen-
tation running on both mica2 and Telos platforms. MintRoute us-
ing SP is smaller in code size on both platforms shown in Table 1.
Since SP separates link estimation and basic neighbor table func-
tions from network protocols, the code for neighbor management
is smaller and simpler than its TinyOS counterpart. MintRoute’s

Min Median Average Max
Duty Cycle 0.031 0.045 0.044 0.047

Delivery 94.1% 96.6% 97.4% 100.0%
Retrans/Pkt 0 0.057 0.059 0.095

Parent Changes 0 1 1.58 5
Parent Evictions 0 0 0 0

Table 2: 15.4 MintRoute statistics on 29 nodes in a 3 hop net-
work over an 8 hour period.

administration of the neighbor table is the brain behind its op-
eration, and thus where the majority of code is located. The
Engine is responsible for sending and forwarding multihop mes-
sages. The slightly larger code size is the result of setting fields in
sp message t, not added complexity.

We deployed MintRoute for 8 hours on Telos and mica2 plat-
forms using the same settings as in [35]—a 3 minute application
data generation rate and 5 minute route beacon interval. We ex-
amined a few metrics to determine if separating concerns led to
link-independent optimizations. Table 2 the data collected from
running MintRoute above SP on the 15.4 MAC protocol (Telos).
MintRoute established reliable delivery and stable routes across a
3 hop network evident by the high success rate. We can conclude
that MintRoute effectively managed the neighbor table since there
were very few parent changes and evictions. Small parent changes
combined with high packet success rate is proof that the link es-
timation provided relevant values to make good routing decisions
independent of the underlying link.

We deployed the same MintRoute implementation above SP on
the mica2 platform. Data from the mica2 test led to the same over-
all results—there were a minimal number of parent changes (at
most three) and only one eviction. One additional metric is network
power consumption. Since B-MAC can send both long and short
packets consuming an order of magnitude different energy, we can
evaluate the effectiveness of message futures on system lifetime.
Results in [35] show a maximum duty cycle of 2.5% without SP.
With SP, our nodes achieved a median duty cycle of 1.1%, maxi-
mum of 1.5% for nodes closest to the root, and minimum of 0.5%
for leaf nodes. The lower duty cycle is due to message futures and
piggybacking. Almost twice as many packets were sent with short



Component RAM Msgs Flash
mica2

Trickle 7 57 573
Synopsis Diffusion 19 57 ∗880

telos
Trickle 10 64 578
Synopsis Diffusion 19 64 642

* An additional 400 bytes of flash are used for 64-bit C libraries

Table 3: Measured code size and memory usage for the Trickle
and Synopsis Diffusion SP implementations. RAM is the mem-
ory usage, Msgs is the amount of RAM used by message
buffers, and Flash is the code size in bytes.
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Figure 10: Trickle propagation behavior on 15.4. New data is
injected at the lower left corner node with time measured in
seconds.

preambles than with long preambles. The large amount of piggy-
backing saved significant energy and increased the overall network
lifetime.

To evaluate Trickle, we ran it on Telos nodes. Trickle success-
fully disseminated advertisements to all node; however, our de-
ployments only yielded a few hops and were not sufficient for a
full analysis. For additional verification, we analyzed Trickle in
TOSSIM [23]. We emulated the CC2420 transceiver, including
wakeup and transmission times, internal state of the RF IC, and
register and memory contents. The RF propogation model is based
on empirical data published in [36]. The emulation allowed us to
run our Telos SP code and the TinyOS CC2420 link protocol in
simulation without any changes.

We simulated Trickle on a grid of 225 nodes to mirror the simu-
lations in [26]. Figure 10 shows the dissemination speed of Trickle
when a new advertisement is injected from the bottom left corner of
the network. Trickle successfully completes its dissemination de-
spite our 15.4 implementation only providing a round-robin unicast
mechanism for messages destined for the broadcast address. Not
only does Trickle work well above a foreign link, it also gains the
power management capabilities provided by the link. Our Trickle
SP implementation is the first time Trickle has been realized and
evaluated on a slotted link protocol. Table 3 shows the code size of
Trickle, requiring only minimal state and implementation.

To test interoperability between multiple network protocols, we
evaluated the power consumption of running MintRoute, Synopsis
Diffusion (SD), and MintRoute running with SD. As discussed in
Section 5, SD benefits from the gradient created by other protocols.
Instead of testing the neighbor sharing, we show that the message
pool greatly reduces overall power consumption.

Protocol Type Neighbors Msg Pool
802.11 CSMA/RTS provide/use -
SIFT,CSMA/p* CSMA/CA - -
B-MAC CSMA/LPL - very helpful
WiseMAC np-CSMA provide/use helpful
S-MAC,T-MAC Slotted CSMA provide/use helpful
TDMA/802.15.4 TDMA provide helpful
TRAMA TDMA provide critical

Table 4: Interaction between SP and link protocols

We tested protocol interoperability on the mica2 over a multi-
hop network with a “density” (or connectivity) of approximately 5
nodes per hop. We ran both protocols separately and then finally
within the same system on SP. Our results in Figure 11 show an
excerpt of packet receptions during each test. White blocks are
MintRoute packets while gray blocks are SD packets. Long pack-
ets are represented by a long block while short packets are a short
block. The small ticks are the times that the root node sampled the
channel for activity.

The results show that each protocol independently must send
long packets in order to wake up neighboring nodes. However,
when the services are run side-by-side, SP’s message pool batches
the broadcast messages together to reduce power consumption.
Furthermore, neighbor nodes that hear the broadcast piggyback
their pending broadcast messages after the current node completes.
Analysis of the packet receptions reveals that running the two pro-
tocols together above SP result in a 35% power savings over run-
ning each of the protocols independently–a 35% power savings can
result in a 54% longer node lifetime! The presence of the message
pool allowed batching of common messages leading to significant
power savings; we made no changes to either network protocol in
order to run this test.

7. RELATED PROTOCOLS
In previous sections, we illustrate our SP design through imple-

mentation and performance benchmarks on the TinyOS platform.
Three different network protocols showed the benefits of pushing
the unifying abstraction closer to the data link layer. In this section,
we review related protocols above and below SP, and discuss how
these protocols can use SP.

7.1 Link Layer Protocols
Researchers have proposed may link protocols for wireless sen-

sor networks. To show the generality of our SP abstraction, we
investigated recent publications that are representative of current
protocols. Table 4 summarizes proposed link protocols and how
they can potentially interact with SP. For example, classic CSMA
protocols, such as SIFT or CSMA/p* [20, 45], use different car-
rier sense and backoff techniques to resolve multiple access on
the channel. They do not require neighbor information in gen-
eral, nor do they optimize transmission according to information
in message pool. When the link does not maintain neighbors, SP
relies on network protocols to populate the table. For example,
MintRoute uses information from route beacons to add entries to
the neighbor table if they do not exist. Other CSMA protocols,
like WiseMAC [7], maintain schedules to reduce idle listening.
WiseMAC uses a similar optimization to that presented in Sub-
section 4.2 where nodes learn their neighbor’s low power listening
schedule. Although many CSMA protocols do not maintain neigh-
bor information, they benefit from the message pool and message
futures that enable higher throughput by aggregating transmissions.



Figure 11: Multiple network protocols running above SP can cause the overall system to save power compared to running the
protocols independently. This 2 minute excerpt of each protocol running on the mica2. The top graph shows an idle node while the
bottom graph shows the protocols piggybacking on each other even though they are oblivious to the other’s presence. MintRoute
packets are shown in white, while synopsis diffusion packets are gray.

On the other end of spectrum, it is mandatory for many
TDMA-type schemes, such as S-MAC [56], T-MAC [50] and
TRAMA [37], to maintain a list of neighbors’ schedules. Some
of them can optionally optimize their schedules through the use of
message futures. Our proposed design of SP can serve as a good
link layer abstraction to accommodate these link protocols without
losing their primary features and benefits.

7.2 Network Layer Protocols
Three different network protocols—collective routing, data dis-

semination and aggregation—perfomed well using our SP abstrac-
tion. SP is applicable to other network protocols. We tabulated
the properties of several proposed network protocols in Table 5.
Despite the large range of functionality, most benefit from shared
neighbor state. A unified link abstraction not only provides a link-
independent interface but also reduces state and computation over-
head signficantly for maintaining system-wide neighborhood infor-
mation. Even if neighbor information is provided by the link layer,
other network protocols, such as topology control protocols [1, 14,
55], can enforce domain-specific policies on the neighbor popu-
lation to achieve additional power savings or throughput. Many
network protocols generate periodic traffic; the SP message pool
structure allows the link protocol to optimize accordingly. Net-
work protocols may inspect the pool and adjust their behavior. For
example, AODV [34] can take advantage of message futures to de-
lay expiration of a routing state if the same route will be used again
in the near future. Extreme cases are PEDAMACS [10], FPS [15],
and AppSleep [38] which require explicit information of the up-
per layer’s bandwidth and traffic patterns to schedule transmissions.
These protocols may maintain their slots through the neighbor ta-
ble wakeup schedules, and even overwrite MAC layer schedules, to
dictate when SP can safely send messages. For all of these proto-
cols, SP provides a rich, yet concise, set of primitives for network
services to achieve their expected functionality. In many cases, SP
can reduce implementation overhead by simplifying access to com-
monly used structures such as the neighbor table.

8. CONCLUDING REMARKS
Culler et. al. claim that “the primary factor currently limiting

progress in sensornets is not a specific technical challenge but in-
stead is the lack of an overall sensor network architecture.” [3]
The unified link level abstraction embodied in SP can advance the
research in sensor networks and provides a first step to building
a larger architecture. By building upon SP’s abstraction, rather

than programming directly to the specific link, protocols can out-
last technology generations. Already successors to 802.15.4 are
in progress and many innovations in low power radio designs are
emerging. These may provide more efficient forms of sampling or
slotting. The evidence provided here of power-aware network pro-
tocols expressed in terms of SP being mapped efficiently to very
different link-level power management mechanisms suggests that
these same protocols are likely to map to future link technologies.
Thus, good protocols can be long lasting and can be improved with
time and experience. Second, such an abstraction encourages in-
novation in network protocol design because the designer can re-
alize the protocol at a fairly high level, without concentrating on
link specifics. By exposing sets of packets, exerting simple reli-
ability and urgency controls, adapting to congestion and loss af-
ter concerted effort, and by cooperating in neighbor management
and schedule formation, protocol optimizations can be realized on
a variety of specific link layers. Although in a more monolithic
design, a network protocol may squeeze every last ounce out of
the link through an integrated approach, we find that in practice a
lean layer that provides a separation of concerns may allow greater
overall optimization as the developers can more easily focus on
key aspects of the protocol design, rather than designing the en-
tire system. We presented several cases where SP achieves better
performance through the abstraction than the extisting monolithic
implementations. Those existing protocols could be improved us-
ing the concepts presented by SP; however, we feel the optimiza-
tions are easier to perform with the abstraction in place. Finally,
it becomes natural to think about optimizations arising from multi-
ple coexisting protocols cooperating in how they use resources and
share information.

The unified abstraction presented here is only a step towards an
“overall sensor network architecture.” There are significant issues
that are within the scope of a link layer abstraction like SP that we
have not addressed and there are important architectural issues that
are beyond the scope of such an abstraction.

Many sensor network applications utilize time correlated time
samples and thus require time synchronization. Example applica-
tions include structural analysis [54], shooter localization [40], and
several middleware services like localization [30]. Time synchro-
nization services [9, 31] are usually situated above the link layer;
however, MAC-layer timestamping greatly improves precision [29]
by providing microsecond resolution of the start-of-frame delim-
iter. Since timestamps must cross layers, a unifying link abstraction
should provide a mechanism for conveying timestamps. There are a



Protocol Function Neighbor List Message Pool
AODV, DSDV routing use helpful
MintRoute 1-sink routing provide/use/trim queueing
PSFQ, RMST reliable transport use helpful
CODA, Fusion congestion control maybe use critical
TAG query/aggregation use helpful
Synopsis Diffusion aggregation use for gradient helpful
Trickle, Deluge dissemination helpful helpful
AppSleep, FPS scheduling use extensively critical
LEACH, GAF, SPAN topology management use/trim -

Table 5: Network Protocols above SP and their use of SP’s neighbor table and message pool. Features marked as helpful indicate
where code complexity is reduced if used.

number of ways one could implement timestamping in SP—packet
meta-data and event callbacks are two possible methods. The pre-
ferred method of exposing timestamps in the link abstraction re-
mains an open question.

Arguments can be made for additional features in SP. For exam-
ple, SP provides single-hop communication but does not explicitly
address multicast. One can imagine that providing such a capability
between the link and network layers might simplify both, much as
cooperative neighbor management and scheduling in SP has done.

Although SP stands for “Sensor Protocol”, it does not embody
all of the traits commonly attributed to a conventional protocol. SP
defines communication between two entities—in our case, SP fa-
cilitates communication between protocols within a system. In this
way, SP provides a service together with a set of unifying inter-
faces. On the other hand, one aspect notably absent from SP is
a wire format. As both SP and the proposed sensornet architec-
ture mature, SP services and interfaces may promote a full protocol
definition, similar to IP. However, SP currently operates as an ar-
chitecture for composing protocols, a communications service, and
a unified abstraction for building efficient sensor network systems.

Numerous network level architectural issues are beyond the
scope of SP, although we hope the presence of such an abstraction
will enable their resolution. For example, network level naming re-
mains an open question. Several studies have suggested attribute-
based naming, rather than node addresses, is particularly important
in sensor networks [19, 28]. Others have observed that address-
free protocols are important [3, 8] and the use of predicates for
identifying participants in network-level communication. SP takes
no position on these issues; it simply conveys opaque link level
unique identifiers and a broadcast address between the link and net-
work layers. In addition, SP does not address how sensor network
patches and the services within them present themselves to the In-
ternet. It simply provides a way to connect to gateway nodes, re-
gardless of the specific link technology. SP does not dictate what
network protocols ought to be present, how they are factored, or
what they should do. Its design does pay special attention to allow-
ing multiple network protocols to coexist and cooperate and antici-
pates that applications would specialize what protocols are present,
but the abstraction would be valuable if a single widely used net-
work layer emerged. Our SP design strictly provides mechanisms
for network protocols to be built. We have strived to separate mech-
anism from policy by facilitating communication between link and
network protocols.

SP does not address how security is integrated into the sensor
network architecture. Since SP acts as a communication mecha-
nism between link and network protocols, we envision that link
security may be implemented orthogonally from network security
with SP sandwiched in the middle. The packet’s data payload is
opaque to SP, and thus the contents are not important for SP’s op-

eration. The Zigbee security model follows this policy—it supports
independent security at link, network, and application layers.

One might ask what are the inherent limits of our approach.
Will the urgency and reliability hints be sufficient for “effector net-
works” to provide distributed control of various actuators? Will it
extend to other wireless links, such as those that use frequency hop-
ping and other forms of diversity? Ultimately, time and continued
innovation prove out an architecture. As a step toward those larger
determinations, we have shown a novel kind of translucent layer
that allows power-aware network protocols to operate very effec-
tively on widely varying link-level power management schemes.
We have shown multiple network protocols gaining benefit from
their coexistence over a unified link level abstraction. We have seen
that such a “narrow waist” can be formed without sacrificing per-
formance and even that the separation of concerns can lend itself to
optimizations that, while theoretically possible, had not appeared in
monolithic approaches. We may conclude that in-network process-
ing, rather than end-to-end communication is not inconsistent with
the presence of unifying abstraction. Indeed, such a lower layer
waist can be made concrete and demonstrated to be effective.
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